
www.manaraa.com

A

Distributed Data Management Using MapReduce

FENG LI, National University of Singapore
BENG CHIN OOI, National University of Singapore
M. TAMER ÖZSU, University of Waterloo
SAI WU, Zhejiang University

MapReduce is a framework for processing and managing large scale data sets in a distributed cluster, which
has been used for applications such as generating search indexes, document clustering, access log analysis,
and various other forms of data analytics. MapReduce adopts a flexible computation model with a simple
interface consisting of map and reduce functions whose implementations can be customized by application
developers. Since its introduction, a substantial amount of research efforts have been directed towards mak-
ing it more usable and efficient for supporting database-centric operations. In this paper we aim to provide a
comprehensive review of a wide range of proposals and systems that focusing fundamentally on the support
of distributed data management and processing using the MapReduce framework.
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1. INTRODUCTION
Database management systems (DBMSs) have become a ubiquitous operational plat-
form in managing huge amounts of business data. DBMSs have evolved over the last
four decades and are now functionally rich. While enterprises are struggling with the
problem of poor database scalability, a new challenge has emerged that has impacted
the IT infrastructures of many modern enterprises. DBMSs have been criticized for
their monolithic architecture that is claimed to make them “heavyweight” and ex-
pensive to operate. It is sometimes argued that they are not efficient for many data
management tasks despite their success in business data processing. This challenge
has been labeled as the big data problem. In principle, while earlier DBMSs focused on
modeling operational characteristics of enterprises, big data systems are now expected
to model user behaviors by analyzing vast amounts of user interaction logs. There have
been various proposals to restructure DBMSs (e.g., [Chaudhuri and Weikum 2000;
Stonebraker et al. 2007]), but the basic architecture has not changed dramatically.

With the increasing amount of data and the availability of high performance and rel-
atively low-cost hardware, database systems have been extended and parallelized to
run on multiple hardware platforms to manage scalability [Özsu and Valduriez 2011].
Recently, a new distributed data processing framework called MapReduce was pro-
posed [Dean and Ghemawat 2004] whose fundamental idea is to simplify the paral-
lel processing using a distributed computing platform that offers only two interfaces:

Authors’ addresses: F. Li and B-C. Ooi, School of Computing, National University of Singapore, Singapore;
M. T. Özsu, Cheriton School of Computer Science, University of Waterloo, Canada; S. Wu, Department of
Computer Science, Zhejiang University, China.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� 0 ACM 0360-0300/0/-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. 0, No. 0, Article A, Publication date: 0.



www.manaraa.com

A:2 Feng Li et al.

map and reduce. Programmers implement their own map and reduce functions, while
the system is responsible for scheduling and synchronizing the map and reduce tasks.
MapReduce model can be used to solve the “embarrassingly parallel” problems1, where
little or no effort is required to partition a task into a number of parallel but smaller
tasks. MapReduce is being used increasingly in applications such as data mining, data
analytics and scientific computation. Its wide adoption and success lies in its distin-
guishing features, which can be summarized as follows.
(1) Flexibility. Since the code for map and reduce functions are written by the user,

there is considerable flexibility in specifying the exact processing that is required
over the data rather than specifying it using SQL. Programmers can write simple
map and reduce functions to process petabytes of data on thousands of machines
without the knowledge of how to parallelize the processing of a MapReduce job.

(2) Scalability. A major challenge in many existing applications is to be able to scale
to increasing data volumes. In particular, elastic scalability is desired, which re-
quires the system to be able to scale its performance up and down dynamically as
the computation requirements change. Such a “pay-as-you-go” service model is now
widely adopted by the cloud computing service providers, and MapReduce can sup-
port it seamlessly through data parallel execution. MapReduce was successfully
deployed on thousands of nodes and able to handle petabytes of data.

(3) Efficiency. MapReduce does not need to load data into a database, which typi-
cally incurs high cost. It is, therefore, very efficient for applications that require
processing the data only once (or only a few times).

(4) Fault tolerance. In MapReduce, each job is divided into many small tasks that
are assigned to different machines. Failure of a task or a machine is compensated
by assigning the task to a machine that is able to handle the load. The input of a
job is stored in a distributed file system where multiple replicas are kept to ensure
high availability. Thus, the failed map task can be repeated correctly by reloading
the replica. The failed reduce task can also be repeated by re-pulling the data from
the completed map tasks.

The criticisms of MapReduce center on its reduced functionality, requiring consid-
erable amount of programming effort, and its unsuitability for certain types of ap-
plications (e.g., those that require iterative computations) [DeWitt et al. 2008; De-
witt and Stonebraker 2009; Pavlo et al. 2009; Stonebraker et al. 2010]. MapReduce
does not require the existence of a schema and does not provide a high-level lan-
guage such as SQL. The flexibility advantage mentioned above comes at the expense
of considerable (and usually sophisticated) programming on the part of the user. Con-
sequently, a job that can be performed using relatively simple SQL commands may
require considerable amount of programming in MapReduce, and this code is gener-
ally not reusable. Moreover, MapReduce does not have built-in indexing and query
optimization support, always resorting to scans. The potential performance drawback
of MapReduce has been reported [Pavlo et al. 2009] on the basis of experiments on
two benchmarks – TPC-H and a customized benchmark tailored for search engines. In
a 100-node cluster, a parallel database system and a column-wise data manage sys-
tem called Vertica (http://www.vertica.com) show superior performance than Hadoop
(http://hadoop.apache.org/) implementation of MapReduce for various workloads, in-
cluding simple grep, join and aggregation jobs.

Since the introduction of MapReduce, there have been a long stream of research that
attempt to address the problems highlighted above, and this indeed remains an active
area of research. Considerable effort has been spent on efficient implementation of the

1http://parlab.eecs.berkeley.edu/wiki/media/patterns/map-reduce-pattern.doc
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Table I. map and reduce Functions
map (k1, v1) ! list(k2, v2)

reduce (k2, list(v2)) ! list(v3)

Table II. UserVisits table
sourceIP VARCHAR(16)
destURL VARCHAR(100)

adRevenue FLOAT
userAgent VARCHAR(64)

countryCode VARCHAR(3)
languageCode VARCHAR(6)
searchWord VARCHAR(32)

duration INT

MapReduce framework. There have been proposals for more sophisticated scheduling
algorithms [Zaharia et al. 2008] and parsing schemes [Jiang et al. 2010] to improve
performance. There have also been a number of works to extend the framework to
support more complex applications [Condie et al. 2010; Bu et al. 2010]. High level
declarative (Hive [Thusoo et al. 2009] and Pig [Olston et al. 2008]), and procedural
languages (Sawzall [Pike et al. 2005]) as well as a Java library (FlumeJava [Chambers
et al. 2010]), have also been proposed for the MapReduce framework to improve its
ease of use (Section 3.2).

The focus of this survey is on large-scale data processing using MapReduce. The
ease with which MapReduce programs can be parallelized has caused the migration
of a number of applications to the MapReduce platform. There are two aspects of
supporting DBMS functionality over MapReduce. The first aspect is the implemen-
tation of database operators, such as select, project, etc, as MapReduce jobs, and
specific indexes [Dittrich et al. 2010] to support these implementations (Section 4).
The second aspect is to combine these implementations to create a fully-functional
DBMS/data warehouse on MapReduce (Section 5). Example MapReduce-based DBMS
implementations include HadoopDB [Abouzeid et al. 2009], Llama [Lin et al. 2011],
MRShare [Nykiel et al. 2010] and Cheetah [Chen 2010]. In addition, traditional
database systems sometimes provide MapReduce as a built-in feature (e.g., Greenplum
and Aster) [Friedman et al. 2009].

Within this context, the objectives of this survey are four-fold. First we introduce
this new and increasingly widely deployed distributed computing paradigm (Section 2)
and its current implementations (Section 3). Second, we present the current research
on enhancing MapReduce to better address modern data intensive applications with-
out losing its fundamental advantages (Sections 4 and 5). Third, we discuss ongoing
work in extending MapReduce to handle a richer set of workloads such as streaming
data, iterative computations (Section 6). Finally, we briefly review a number of recent
systems that may have been influenced by MapReduce (Section 7). We assume that the
readers are familiar with basic data management terminology and concepts.

2. MAPREDUCE TECHNOLOGY
2.1. MapReduce Programming Model
MapReduce is a simplified parallel data processing approach for execution on a com-
puter cluster [Dean and Ghemawat 2004]. Its programming model consists of two user
defined functions, map and reduce2 (Table I).

The inputs of the map function is a set of key/value pairs. When a MapReduce job is
submitted to the system, the map tasks (which are processes that are referred to as
mappers) are started on the compute nodes and each map task applies the map func-
tion to every key/value pair (k1, v1) that is allocated to it. Zero or more intermediate
key/value pairs (list(k2, v2)) can be generated for the same input key/value pair. These

2As a convention, we will use courier font when we refer to the specific function or interface, and the regular
font when we refer to the processing of the corresponding function.

ACM Computing Surveys, Vol. 0, No. 0, Article A, Publication date: 0.



www.manaraa.com

A:4 Feng Li et al.

ALGORITHM 1: Map Function for UserVisits
input: String key, String value

1 String[] array = value.split(”|”);
2 EmitIntermediate(array[0],ParseFloat(array[2]));

ALGORITHM 2: Reduce Function for UserVisits
input: String key, Iterator values

1 float totalRevenue = 0;
2 while values.hasNext() do
3 totalRevenue += values.next();
4 end
5 Emit(key, totalRevenue);

intermediate results are stored in the local file system and sorted by the keys. After all
the map tasks complete, the MapReduce engine notifies the reduce tasks (which are
also processes that are referred to as reducers) to start their processing. The reducers
will pull the output files from the map tasks in parallel, and merge-sort the files ob-
tained from the map tasks to combine the key/value pairs into a set of new key/value
pair (k2, list(v2)), where all values with the same key k2 are grouped into a list and
used as the input for the reduce function. The reduce function applies the user-defined
processing logic to process the data. The results, normally a list of values, are written
back to the storage system.

As an example, given the table UserVisits shown in Table II3, one typical job is to
calculate the total adRevenue for each sourceIP. A possible MapReduce specification of
the map and reduce functions are shown in Algorithms 1 and 2. The algorithms assume
that the input dataset is in text format where the tuples are separated by lines and
columns are separated by the character “|”. Each mapper parses tuples assigned to it,
and generates a key/value pair (sourceIP, adRevenue). The results are first cached in
the mapper’s local disk and then copied (commonly called shuffling) to the reducers.
In the reduce phase, key/value pairs are grouped into (sourceIP, (adRevenue1, adRev-
enue2, adRevenue3, ...)) based on their keys (i.e., sourceIP). Each reducer processes
these pairs by summarizing the adRevenue for one sourceIP, and the result (sourceIP,
sum(adRevenue)) is generated and returned.

2.2. MapReduce Architecture
MapReduce adopts a loosely coupled design, where the processing engine is indepen-
dent of the underlying storage system. This design allows the processing and the stor-
age layers to scale up and down independently and as needed. The storage system typ-
ically makes use of an existing distributed file system (DFS), such as Google File Sys-
tem (GFS) [Ghemawat et al. 2003], Hadoop Distributed File System (HDFS)4, which
is a Java implementation of Google File System, RAMCloud [Ongaro et al. 2011], or
LogBase [Vo et al. 2012]. Based on the partitioning strategy employed by the DFS,
data are split into equal-size chunks and distributed over the machines in a cluster.
Each chunk is used as an input for a mapper. Therefore, if the dataset is partitioned
into k chunks, MapReduce will create k mappers to process the data.

MapReduce processing engine has two types of nodes, the master node and the
worker nodes, as shown in Figure 1. The master node controls the execution flow of

3The same schema was used as a benchmark dataset in [Pavlo et al. 2009].
4http://hadoop.apache.org/hdfs/
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Fig. 1. Architecture of MapReduce

the tasks at the worker nodes via the scheduler module. Each worker node is responsi-
ble for a map or reduce process. The basic implementation of MapReduce engine needs
to include the following modules (which are marked as the grey boxes in Figure 1):

(1) Scheduler. The scheduler is responsible for assigning the map and reduce tasks to
the worker nodes based on data locality, network state and other statistics of the
worker nodes. It also controls fault tolerance by rescheduling a failed process to
other worker nodes (if possible). The design of the scheduler significantly affects
the performance of the MapReduce system.

(2) Map module. The map module scans a data chunk and invokes the user-defined
map function to process the input data. After generating the intermediate results
(a set of key/value pairs), it groups the results based on the partition keys, sorts
the tuples in each partition, and notifies the master node about the positions of the
results.

(3) Reduce module. The reduce module pulls data from the mappers after receiving the
notification from the master. Once all intermediate results are obtained from the
mappers, the reducer merges the data by keys and all values with the same key
are grouped together. Finally, the user-defined function is applied to each key/value
pair, and the results are output to DFS.

Given its stated purpose of scaling over a large number of processing nodes, a Map-
Reduce system needs to support fault-tolerance efficiently. When a map or reduce task
fails, another task on a different machine is created to re-execute the failed task.
Since the mapper stores the results locally, even a completed map task needs to be
re-executed in case of a node failure. In contrast, since the reducer stores the results
in DFS, a completed reduce task does not need to be re-executed when node failure
occurs.

ACM Computing Surveys, Vol. 0, No. 0, Article A, Publication date: 0.
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2.3. Extensions and Optimizations of MapReduce Systems
To further improve its efficiency and usability, the basic MapReduce architecture dis-
cussed in Section 2.2 is usually extended, as illustrated in Figure 1, to include the
following modules:

(1) Input and Output modules. The input module is responsible for recognizing the in-
put data with different input formats, and splitting the input data into key/value
pairs. This module allows the processing engine to work with different storage sys-
tems by allowing different input formats to be used to parse different data sources,
such as text files, binary files and even database files. The output module similarly
specifies the output format of mappers and reducers.

(2) Combine module. The purpose of this module is to reduce the shuffling cost by per-
forming a local reduce process for the key/value pairs generated by the mapper.
Thus, it can be considered as a specific type of reducer. In our running example,
to compute the sum of adRevenue for each sourceIP, we can use a combine func-
tion similar to the reduce function in Algorithm 1, so that, for each sourceIP, the
mapper only generates one result, which is the sum of the adRevenue in the corre-
sponding data chunk. Therefore, only n tuples are shuffled to the reducers, where
n is the number of unique sourceIP.

(3) Partition module. This is used to specify how to shuffle the key/value pairs
from mappers to reducers. The default partition function is defined as f(key) =
h(key)%numOfReducer, where % indicates the mod operator and h(key) is the hash
value of the key. A key/value pair (k, v) is sent to the f(k)-th reducer. Users can de-
fine different partition functions to support more sophisticated behavior.

(4) Group module. Group module specifies how to merge the data received from differ-
ent map processes into one sorted run in the reduce phase. By specifying the group
function, which is a function of the map output key, the data can be merged more
flexibly. For example, if the map output key is a composition of several attributes
(sourceIP,destURL), the group function can only compare a subset of the attributes
(sourceIP). As a result, in the reducer module, the reduce function is applied to the
key/value pairs with the same sourceIP.

In this paper, we base our discussion on the extended MapReduce architecture.
As a general processing framework, MapReduce does not specify implementation de-

tails. Therefore, techniques for efficient implementation of MapReduce systems have
received a great deal of attention. The research on this topic can be classified into
two categories. The first category addresses generic system optimizations for Map-
Reduce framework, and focuses on the scheduler and input/output modules. The sec-
ond category concentrates on efficient implementation for specific applications rather
than generic system implementation – these involve the map, partition, group and
reduce modules. We focus on the generic system optimizations to the scheduler and
input/output modules in this section.

2.3.1. Scheduler Optimizations. Scheduler is related to two important features of Map-
Reduce: performance and fault tolerance. The scheduler makes task assignments
based on data locality, which reduces the cost of network communication. Moreover,
when a node crashes, the scheduler assigns the failed task to some other node. Two op-
timizations have been proposed for the scheduler; the first one improves performance
in a heterogeneous environment where the nodes may have different computation ca-
pabilities, while the second improves performance over a multi-user cluster.

Scheduling in a heterogeneous environment. To improve performance in a heteroge-
neous environment, the scheduler performs a speculative execution of a task if the
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node is performing poorly. The task assigned to a poorly performing node is called a
straggler. To detect stragglers, a progress score is maintained for each task. If a task
has a significantly lower progress score than the other tasks that started at the same
time, it is recognized as a straggler. The progress of a map task is the fraction of the
data scanned, while the progress of the reduce task is computed with respect to three
phases: the copy phase, the sort phase, and the reduce phase. To simplify the compu-
tation of the progress score, some MapReduce implementations (such as Hadoop5, an
open source implementation of MapReduce) assume that these three phases have the
same weight. However, in real applications, the execution speeds of the three phases
are usually different. For example, the copy and the sort phases may be finished early
if the data obtained from the mappers are small. Thus, the progress score of the reduce
phase may not be accurate, causing false positives in recognizing stragglers.

To improve the accuracy of the progress score, a new progress indicator, Paral-
lax [Morton et al. 2010b], considers both the execution speed of the current system
and the parallelism of the cluster. At any point in time, to estimate the speed of the re-
maining work, Parallax utilizes the speed information of the tuples already processed.
This speed changes over time, which improves the accuracy of the indicator. Further-
more, considering the parallelized environment of MapReduce, Parallax also estimates
the pipeline width of the cluster for each job. This is estimated as min(m,n), where m is
the number of mappers required for the job and n is the number of free nodes available
(taking into account other running jobs). By considering the pipeline width, Parallax
has been shown to be able to estimate the remaining time accurately even when other
jobs are running on the cluster concurrently. ParaTimer [Morton et al. 2010a] is an
extension of Parallax that has been designed for estimating the remaining time of a
MapReduce job even in the presence of failures or data skew.

To discover the stragglers more accurately based on the progress score, a new
scheduling algorithm, Longest Approximate Time to End (LATE), was designed [Za-
haria et al. 2008]. The (time) rate of progress of a task (ProgressRate) is estimated as
ProgressScore/T where T is the task execution time so far, which is used to estimate
the execution speed of the task. The time to complete this task is then computed as
(1�ProgressScore)/ProgressRate. The task that will take the longest time to finish is
treated as a straggler and is speculatively executed.

A system called Mantri [Ananthanarayanan et al. 2010] further classifies the causes
of the stragglers according to three characteristics: bad and busy machines, cross-rack
traffic, and data skew. Instead of simply running a speculative execution for a strag-
gler, different strategies are adopted based on its cause. For example, to reduce the
cross-rack traffic, a network-aware placement technique ensures that the reducers in
each rack pull roughly the same amount of data from the mappers. Data skew can be
avoided by collecting statistics on the input data, and partitioning the data to different
nodes by a load balancing algorithm [Gufler et al. 2012; Ramakrishnan et al. 2012].
Still another approach is to repartition the straggler’s remaining work to other nodes
when a straggler is detected that is due to data skew [Kwon et al. 2012].

Scheduling over a multi-user cluster. The original MapReduce scheduler adopts a
FIFO strategy. Consequently, when multiple jobs are submitted to the clusters concur-
rently, the response times of the jobs are negatively affected. One solution is to parti-
tion the cluster into a number of sub-clusters, each to be used by a different user. This
strategy is not optimal, since static partitioning may over-provision to users who may
not have jobs to run, and under-provision to others who may need more cluster nodes.
The FAIR scheduler [Zaharia et al. 2009] was proposed to alleviate this problem.

5http://hadoop.apache.org/
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The basic idea of FAIR is to divide the cluster into two levels. At the top level, the
cluster is divided into different pools, each of which is assigned to a group of users and
treated as private sub-clusters. At the second level, in each pool, several jobs share the
computation nodes using a FIFO scheduling strategy. This strategy guarantees that all
concurrent jobs will eventually get a certain number of nodes in their pools, making it
fair. To fully utilize the cluster, if some pools are idle at some time, the nodes in these
pools are allocated to the MapReduce jobs in other pools temporarily.

FAIR has introduced a number of scheduler optimizations. First, it adopts a delayed
scheduling method: instead of assigning a task immediately to a node, it waits for a
certain amount of time before assignment is made to a non-local node. This method
allows data movement to complete, and improves the chances of assigning the task to
the node that owns the data of that task. Second, the reduce phase needs to wait until
all the mappers finish their tasks. Thus, reducers occupy the computation nodes for a
long time while some are idle most of the time. FAIR proposes a copy-compute splitting
method that splits the reduce task into two tasks: copy task and compute task. When a
reducer is still in its copy phase, the node can be used by other jobs, thereby improving
the utilization of the whole cluster.

2.3.2. Optimizations to Input and Output Modules. The input module is responsible for (1)
recognizing the format of the input data, and (2) splitting the input data into raw data
and parsing the raw data into key/value pairs for processing.

The input file can be stored in a local file system, a DFS, or a DBMS. Although the
input/output module cannot directly affect the performance of the storage module, it
can exploit the storage module more efficiently . For example, if a B+ tree index is built
on the input data, the filtering condition in the map function can be utilized in advance
of the job submission: only the data that will pass the filtering condition are scanned.
A static analysis technique can be employed to analyze the map function and discover
the possible filters automatically [Jahani et al. 2011]. Based on the filters, the index
is utilized to reduce the scan time. Moreover, since the filtering and projection infor-
mation are obtained from the compiled code using static analysis, this optimization is
hidden from the users and the submitted program does not need to be modified.

Before the input data can be processed by the map function, it must be converted into
a set of key/value pairs, and each field in the key or the value part must be decoded to
a certain type. Two record decoding schemes have been proposed [Jiang et al. 2010]:
immutable decoding and mutable decoding. The immutable decoding scheme trans-
forms the raw data into immutable objects that are read-only and cannot be modified;
their modification requires the creation of new objects. For example, if a MapReduce
system is implemented in Java, the raw data are usually stored in the Java string ob-
ject, which is immutable. To transform the string into a new value, the original string
object needs to be replaced by a new string object. However, if the mutable decoding
scheme is used, the original object can be modified directly without creating any new
objects. It has been shown, experimentally, that the mutable decoding scheme is sig-
nificantly faster than the immutable decoding scheme, and improves the performance
of MapReduce in the selection task by a factor of two [Jiang et al. 2010].

2.3.3. Configuration Parameters for MapReduce. In addition to the module optimizations
discussed above, it is also necessary to properly set various configuration parameters
for a given MapReduce job, such as the number of map processes launched in each
node, number of reduce processes, size of buffer in the map phase for sorting, size of
buffer in the reduce phase for merging. Proposals have been made to perform this con-
figuration automatically as it is difficult to determine the optimal configuration even
for sophisticated programmers. The process involves the following steps [Herodotou
and Babu 2011].

ACM Computing Surveys, Vol. 0, No. 0, Article A, Publication date: 0.
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(1) Statistics collection. The statistics for estimating the execution time of a Map-
Reduce job (e.g., I/O cost and map selectivity) need to be collected.

(2) Job simulation. After obtaining the statistics, the MapReduce job can be simulated
to estimate the execution time. Several simulation tools, such as MRPerf [Wang
et al. 2009], have been implemented to simulate the job at the task level.

(3) Cost-based optimization. Different settings of the configuration parameters result
in different execution times. Finding the right combination of these parameter val-
ues can be treated as a cost-based optimization problem.

3. MAPREDUCE IMPLEMENTATIONS
In this section, we discuss some open source implementations of MapReduce frame-
work. These implementations are currently dominated by Hadoop, but there are other
alternatives that we discuss in Section 3.1. The basic MapReduce framework and its
implementations do not provide a high level language interface. However, there have
been proposals for such languages that we present in Section 3.2.

3.1. MapReduce Implementations
Our focus in this section is a brief description of basic MapReduce implementations.
There have been extensions to these systems to support a richer set of queries (e.g.,
streaming and iterative queries) that are not covered in this section. Those are dis-
cussed in Section 6.

3.1.1. Hadoop. Hadoop is currently the most popular open source MapReduce im-
plementation. It is written in Java and has been tested in Yahoo’s cluster. Although
Hadoop can be deployed on different storage systems, the released Hadoop package
includes HDFS as the default storage system.

Table III. UDF Functions in Hadoop
Phase Name Function

Map

InputFormat::getSplit Partition the input data into different splits. Each
split is processed by a mapper and may consist of

several chunks.
RecordReader::next Define how a split is divided into items. Each item is

a key/value pair and used as the input for the map

function.
Mapper::map Users can customize the map function to process the

input data. The input data are transformed into some
intermediate key/value pairs.

Job::setSortComparator Specify the class for comparing the key/value pairs.
WritableComparable::compareTo Define the default comparison function for

user-defined key class.
Job::setCombinerClass Specify how the key/value pair are aggregated locally.

Shuffle Job::setPartitionerClass Specify how the intermediate key/value pairs are
shuffled to different reducers.

Reduce
Job::setGroupingComparatorClass Specify how the key/value pairs are grouped in the

reduce phase.
Reducer::reduce Users write their own reduce functions to perform

the corresponding jobs.

The two modules of Hadoop, namely HDFS and the processing engine, are loosely
connected. They can either share the same set of compute nodes, or be deployed on
different nodes. In HDFS, two types of nodes are created: the name node and data
node. The name node records how data are partitioned, and monitors the status of
data nodes in HDFS. Data imported into HDFS are split into equal-size chunks and
the name node distributes the data chunks to different data nodes, which store and
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manage the chunks assigned to them. The name node also acts as the dictionary server,
providing partitioning information to applications that search for a specific chunk of
data.

Hadoop creates two processes with specific functions: job tracker and task tracker.
The job tracker is commonly hosted on the master node in the MapReduce framework,
and implements the scheduler module in Figure 1. Thus, it splits a submitted job into
map and reduce tasks, and schedules them to available task trackers. Each worker
node in the cluster starts a task tracker process and accepts the request from the job
tracker. If the request is a map task, the task tracker will process the data chunk
specified by the job tracker. Otherwise, it initializes the reduce task and waits for the
notification from the job tracker (that the mappers are done) to start processing.

In addition to writing the map and reduce functions, programmers can exert fur-
ther control (e.g., input/output formats and partitioning function) by means of eight
user-defined functions (UDFs) that Hadoop provides. The default functionality of these
functions is given in Table III, but these can be overwritten by customized implemen-
tations. For instance, in the UserVisits table (Table II), the search engine can issue a
query, “select sum(adRevenue) from UserVisits group by countryCode, languageCode”,
to retrieve the total revenue of a country in a specific language. To process the query
using MapReduce, a composite key consisting of countryCode and languageCode is
created. The programmer needs to overwrite the default comparison and grouping
functions to support comparison of composite key and partitioning. Moreover, if the
UserVisits table is stored using different formats, the RecordReader::next function
needs to be customized to parse the data split into key/value pairs.

Since Hadoop is the most popular MapReduce implementation, we use it as a refer-
ence implementation in discussing the other systems.

3.1.2. Cascading. Cascading (http://www.cascading.org/) is not strictly a MapReduce
system implementation, but rather a query planner and scheduler implemented on top
of Hadoop. It extends Hadoop by providing tools for defining complex processing logic
using some atomic operators. Cascading aims to exploit the power of Hadoop without
requiring users to know the programming details in order to reduce the overhead of
migrating applications to Hadoop. It allows the user to link the atomic operators into a
processing graph where each node represents an operator, and data flow is represented
by the edges. A MapReduce job planner is applied to translate the processing graph
into a set of MapReduce jobs. After one job completes, an event notification message
is triggered to wake up the next job in the queue. To support fault tolerance, a failure
trap can be created for the operators to back up the intermediate data. If an operation
fails with exceptions and there is an associated trap, the offending data will be saved
to the resource specified by the trap. In this way, the failed job can be resumed by
another node by loading the data from the failure trap.

3.1.3. Sailfish. Sailfish [Rao et al. 2012] changes the transport layer between mappers
and reducers in Hadoop. The main design contribution is improving the movement of
data from mappers to reducers. The default method basically involves a sort-merge:
the intermediate key/value pairs generated by each mapper are sorted locally, par-
titioned and sent to the corresponding reducers, and merged on the reduce side. In
Sailfish, an abstraction called I-file is introduced that facilitates batch transmission
from mappers to reducers. The mappers directly append their map output key/values
to I-file, which will sort-merge them, and aggregate the pairs based on the partition
key. Sorting the intermediate data becomes an independent phase and is optimized by
I-file itself using batching. In addition, Sailfish relieves users from the task of configur-
ing the MapReduce parameters, because I-file will automatically optimize the sorting
of intermediate data.
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3.1.4. Disco. Disco (http://discoproject.org/) is a distributed computing framework
based on MapReduce developed by Nokia to handle massive numbers of moving objects
in real-time systems. To track the locations of moving objects, the Disco Distributed
File System (DDFS) is designed to support frequent updates. This is necessary since in
other DFSs such as HDFS, files are never updated after insertion. DDFS is a tag-based
file system that has no directory hierarchy; users can tag sets of objects with arbitrary
labels and retrieve them via the tags. DDFS is optimized for storing small-size (4k)
data items, such as user passwords or status indicators (for comparison, the size of
data chunks in HDFS is always set to 64MB or 128MB). Disco supports a distributed
index, called Discodex, which is distributed over the cluster nodes and stored in the
DDFS. The index data are split into small files (called ichunks) that are replicated in
the cluster and provide scalable and fault tolerant indexing.

3.1.5. Skynet. Skynet (http://skynet.rubyforge.org/) is an open-source Ruby implemen-
tation of MapReduce. Besides the basic features of MapReduce systems, Skynet pro-
vides a peer recovery mechanism to reduce the overhead of the master node. The
worker nodes monitor the status of each other; if one worker is down, another worker
will detect it and take over the task. All workers can act as a master for any task at
any time. In this way, Skynet can be configured as a fully distributed system with no
permanent master node. This improves fault-tolerance since the single point of failure
is avoided.

3.1.6. FileMap. FileMap (http://mfisk.github.com/filemap/) is a lightweight implemen-
tation for Unix systems. It does not implement a DFS, and instead stores data in Unix
files. It implements the processing logic via Unix scripts (written in Python and shell
commands). Compared to the other MapReduce implementations, FileMap does not
involve complex installation and configuration. It provides full functionality without
requiring the user to install any special software. Users can write the map and reduce
functions via scripts and submit to FileMap for processing. However, it also lacks some
features available in other MapReduce systems, such as load balancing and fault toler-
ance. In FileMap, files are individually maintained by each node. If a job requires mul-
tiple files that reside on a number of nodes, the performance of the job is determined
by those heavily loaded nodes. Moreover, the failure of a processing node results in the
termination of the job, while in other MapReduce systems, a new node will take over
the failed work.

3.1.7. Themis. Themis [Rasmussen et al. 2012] is a MapReduce implementation de-
signed for small clusters where the probability of node failure is much lower. It
achieves high efficiency by eliminating task-level fault tolerance. On the map side,
the intermediate data are sorted and aggregated in memory. Once the memory is full,
these data are directly sent to the reducers instead of being written to local disk. On
the reduce side, the data shuffled from different mappers are partitioned and writ-
ten to different files based on the partition key (the key/value pairs within the same
partition are unsorted). Then, the reducer reads a whole partition, sorts the key/value
pairs, and applies the reduce function to each key if the data of the partition can fit in
memory. The performance of a MapReduce job can be significantly improved, but the
entire job has to be re-executed in case of a node failure.

3.1.8. Other Implementations. Oracle provides a MapReduce implementation by using
its parallel pipelined table functions and parallel operations6. New DBMSs, such as
Greenplum (http://www.greenplum.com), Aster (http://www.asterdata.com/) andMon-
goDB (http://www.mongodb.org), provide built-in MapReduce support. Some stream

6http://blogs.oracle.com/datawarehousing/2009/10/in-database_map-reduce.html
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systems, such as IBM’s SPADE, are also enhanced with the MapReduce processing
model [Kumar et al. 2010].

3.1.9. System Comparison. Table IV shows the comparison of the various MapReduce
implementations discussed in this section. We summarize these systems in different
ways, including the language used to implement the system, the file system employed,
the indexing strategies, the design of master node and the support for multiple jobs.
Compared to Hadoop, other MapReduce implementations can be considered as light-
weight MapReduce runtime engines. They are either built on top of Hadoop, or imple-
mented by script languages to simplify the development. They lack sophisticated ad-
ministration tools, well documented APIs, and many other Hadoop features (such as
customized scheduler, various types of input/output format support and compression
techniques). Hadoop has become the most popular open source MapReduce implemen-
tation and has been widely adopted.

Table IV. Comparison of MapReduce Implementations
Name Language File System Index Master Server Multiple

Job
Support

Hadoop Java HDFS No Name Node and Job Tracker Yes
Cascading Java HDFS No Name Node and Job Tracker Yes

Sailfish Java HDFS + I-file No Name Node and Job Tracker Yes
Disco Python

and
Erlang

Distributed
Index

Disco
Server

No No

Skynet Ruby MySQL or Unix
File System

No Any node in the cluster No

FileMap Shell and
Perl

Scripts

Unix File
System

No Any node in the cluster No

Themis Java HDFS No Name Node and Job Tracker Yes

3.2. High Level Languages for MapReduce
The design philosophy of MapReduce is to provide a flexible framework that can be
exploited to solve different problems. Therefore, MapReduce does not provide a query
language, expecting the users to implement their customized map and reduce func-
tions. While this provides considerate flexibility, it adds to the complexity of applica-
tion development. To make MapReduce easier to use, a number of high-level languages
have been developed, some of which are declarative (HiveQL [Thusoo et al. 2009],
Tenzing [Chattopadhyay et al. 2011], JAQL [Beyer et al. 2009]), others are data flow
languages (Pig Latin [Olston et al. 2008]), procedural languages (Sawzall [Pike et al.
2005]), Java library (FlumeJava [Chambers et al. 2010]), and still others are declar-
ative machine learning languages (SystemML [Ghoting et al. 2011]). In this section,
we review Pig Latin and HiveQL, the two most popular languages for MapReduce sys-
tems, and their corresponding systems, Pig and Hive, which automatically translate
queries written in their respective languages into MapReduce jobs.

3.2.1. Pig Latin. Pig Latin [Olston et al. 2008] is a dataflow language that adopts a
step-by-step specification method where each step refers to a data transformation op-
eration. It supports a nested data model with user defined functions and the ability to
operate over plain files without any schema information. The details of these features
are discussed below:
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(1) Dataflow language. Pig Latin is not declarative and the user is expected to spec-
ify the order of the MapReduce jobs. Pig Latin offers relational primitives such as
LOAD, GENERATE, GROUP, FILTER and JOIN, and users write a dataflow pro-
gram consisting of these primitives. The order of the MapReduce jobs generated is
the same as the user-specified dataflow, which helps users control query execution.

(2) Operating over plain files. Pig is designed to execute over plain files directly with-
out any schema information although a schema can also be optionally specified.
The users can offer a user-defined parse function to Pig to specify the format of the
input data. Similarly, the output format of Pig can also be flexibly specified by the
user.

(3) Nested data model. Pig Latin supports a nested data model. The basic data type
is Atom such as an integer or string. Atoms can be combined into a Tuple, and
a several Tuples form a Bag. It also supports more complex data types such as
MaphsourceIP, Bag(Tuple1, Tuple2, ...)i. This model is closer to the recursive data
type in object-oriented programming languages and easier to use in user defined
functions.

(4) User defined functions (UDFs). Due to the nested data model of Pig Latin, UDFs in
Pig support non-atomic input parameters, and can output non-atomic values. The
UDF can be used in any context, while in SQL, the set-valued functions cannot
be used in the SELECT clause. For example, the following script can be used to
compute the top 10 adRevenue for each sourceIP:

groups = GROUP UserVisits BY sourceIP;
result = FOREACH groups GENERATE souceIP, top10(adRevenue);

In this script, top10 is a UDF that takes a set of adRevenue as input, and outputs
a set containing top 10 adRevenues.

3.2.2. HiveQL. HiveQL is a SQL-like declarative language that is part of the
Hive [Thusoo et al. 2009] system, which is an OLAP execution engine built on top
of Hadoop. HiveQL features are the following:

(1) SQL-like language. HiveQL is a SQL-like query language that supports most of the
traditional SQL operators such as SELECT, CREATE TABLE, UNION, GROUP
BY, ORDER BY and JOIN. In addition, Hive has three operators, MAP, CLUSTER
BY and REDUCE, which could integrate user defined MapReduce programs into
the SQL statement. As can be seen from the HiveQL query below, the CLUSTER
BY operator is used to specify the intermediate key between map and reduce.

FROM (Map UserVisits USING ‘python my_map.py’
AS (sourceIP, adRevenue)
From docs CLUSTER BY word) a

REDUCE sourceIP, totalRevenue USING ‘python my_reduce.py’

HiveQL supports equijoin, semijoin and outer join. Since Hive is a data warehouse
system, the insert operation in HiveQL does not support inserting a tuple into an
existing table, instead it replaces the table by the output of a HiveQL statement.

(2) Data Model and Type Systems. Hive supports the standard relational data model:
the data are logically stored in tables, each of which consists of rows, and each row
consists of columns, and a table may consist of several partitions. To implement
this data model on top of MapReduce, the table is defined as a directory in DFS,
while the partitions are subdirectories or files. Furthermore, the partition and ta-
ble could also be divided into multiple buckets, each of which maps to a file in DFS.
The bucket can be treated as the sample of the whole table, and is usually used for

ACM Computing Surveys, Vol. 0, No. 0, Article A, Publication date: 0.



www.manaraa.com

A:14 Feng Li et al.

Command
Line

Interface
Web

Interface
JDBC/
ODBC
Server

Query Compiler
Query Optimizer
Query Executor

Meta
Data

Upper Level System

Master

Slave ... Slave

Hadoop

Fig. 2. Architecture of System like Pig and Hive

debugging the Hive queries before they are fully run on the table. Hive provides
Metastore for mapping the table to these partitions and buckets.
Columns in Hive can be either primitive types such as integer, float and string, or
complex types such as array, list and struct. The complex types could be nested,
for instance, list(map(string, string)). The schema information of the tables is also
stored in Metastore. Hive has the flexibility to process plain files without trans-
forming the data into tables. In this case, the user needs to implement a custom
serializer and deserializer that will be used during the parsing of the data. Hive
offers a default serializer that could determine the columns by user specified de-
limiter or regular expressions.

3.2.3. Architecture of Hive and Pig. Though Pig and Hive support different languages,
the architecture of these systems are similar, as shown in Figure 2. The upper level
consists of multiple query interfaces such as command line interface, web interface
or JDBC/ODBC server. Currently, only Hive supports all these query interfaces. After
a query is issued from one of the interfaces, the query compiler parses this query to
generate a logical plan using the metadata. Then, the rule based optimization, such
as pushing projection down, is applied to optimize the logical plan. Finally, the plan is
transformed into a DAG of MapReduce jobs, which are subsequently submitted to the
execution engine one-by-one.

3.2.4. Comparison of Pig and Hive. The comparison of Pig and Hive is summarized in
Table V. The most significant difference between Pig and Hive is the language. For
example, the MapReduce job to compute the total adRevenue for each sourceIP in
Algorithms 1 and 2 can be accomplished by the following Pig scripts:

groups = GROUP UserVisits BY sourceIP;
result = FOREACH groups GENERATE SUM(adRevenue), sourceIP;

In contrast, in HiveQL, this can be specified as follows:

SELECT sourceIP, sum(adRevenue)
FROM UserVisits
GROUPBY sourceIP;
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Table V. Comparison between Pig and Hive
Hive Pig

Language Declarative SQL-like Dataflow
Data model Nested Nested

UDF Supported Supported
Data partition Supported Not supported

Interface Command line, web,
JDBC/ODBC server

Command line

Query optimization Rule based Rule based
Metastore Supported Not supported
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4. MAPREDUCE IMPLEMENTATION OF DATABASE OPERATORS
There have been a number of attempts to implement the typical database operators via
MapReduce algorithms in order to improve the usefulness of these systems in data-
intensive applications. Simple operators such as select and project can be easily
supported in the map function, while complex ones, such as theta-join [Okcan and
Riedewald 2011], equijoin [Blanas et al. 2010], multiway join [Wu et al. 2011; Jiang
et al. 2011], and similarity join [Vernica et al. 2010; Metwally and Faloutsos 2012;
Afrati et al. 2012], require significant effort. In this section, we discuss these proposals.

The projection and selection can be easily implemented by adding a few conditions
to the map function to filter the unnecessary columns and tuples. The implementation
of aggregation was discussed in the the original MapReduce paper. Figure 3 illustrates
the data flow of the MapReduce job for the aggregation operator. The mapper extracts
an aggregation key (Aid) for each incoming tuple (transformed into key/value pair).
The tuples with the same aggregation key are shuffled to the same reducers, and the
aggregation function (e.g., sum, min) is applied to these tuples.

Join operator implementations have attracted by far the most attention, as it is
one of the more expensive operators, and a better implementation may potentially
lead to significant performance improvement. Therefore, in this section, we focus our
discussion on the join operator. We summarize the existing join algorithms in Figure 4.

4.1. Theta-Join
Theta-join (✓-join) [Zhang et al. 2012b] is a join operator where the join condition ✓ is
one of {<,,=,�, >, 6=}. As a baseline, let us first consider how a binary (natural) join
of relations R(A,B) and S(B,C) can be performed using MapReduce. Relation R is par-
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titioned and each partition is assigned to a set of mappers. Each mapper takes tuples
ha, bi and converts them to a list of key/value pairs of the form (b, ha,Ri), where the key
is the join attribute and the value includes the relation name R. These key/value pairs
are shuffled and sent to the reducers so that all pairs with the same join key value
are collected at the same reducer. The same process is applied to S. Each reducer then
joins tuples of R with tuples of S (the inclusion of relation name in the value ensures
that tuples of R or S are not joined with each other).

To efficiently implement theta-join on MapReduce, the |R| ⇥ |S| tuples should be
evenly distributed on the r reducers, so that each reducer generates about the same
number of results: |R|⇥|S|

r

. To achieve this goal, a randomized algorithm, 1-Bucket-
Theta algorithm, was proposed [Okcan and Riedewald 2011] that evenly partitions
the join matrix into buckets (Figure 5), and assigns each bucket to only one reducer
to eliminate duplicate computation, while also ensuring that all the reducers are as-
signed the same number of buckets to balance the load. In Figure 5, both tables R and
S are evenly partitioned into 4 parts, resulting in a matrix with 16 buckets that are
grouped into 4 regions. Each region is assigned to a reducer.

Figure 6 illustrates the data flow of the theta-join when ✓ equals “ 6=” for the case
depicted in Figure 5. The map and reduce phases are implemented as follows:
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(1) Map. On the map side, for each tuple from R or S, a row id or column id (call it
Bid) between 1 and the number of regions (4 in the above example) is randomly
selected as the map output key, and the tuple is concatenated with a tag indicating
the origin of the tuple as the map output value. The Bid specifies which row or
column in the matrix (of Figure 5) the tuple belongs to, and the output tuples of
the map function are shuffled to all the reducers (each reducer corresponds to one
region) that intersect with the row or column.

(2) Reduce. On the reduce side, the tuples from the same table are grouped together
based on the tags. The local theta-join computation is then applied to the two parti-
tions. The qualified results (R.key 6= S.key) are output to storage. Since each bucket
is assigned to only one reducer, no redundant results are generated.
In Figure 5 there are 16 buckets organized into 4 regions; there are 4 reducers in
Figure 6, each responsible for one region. Since Reducer 1 is in charge of region
1, all R tuples where Bid = 1 or 2 and S tuples with Bid = 1 or 2 are sent to it.
Similarly, Reducer 2 gets R tuples with Bid = 1 or 2 and S tuples with Bid = 3 or 4.
Each reducer partitions the tuples it receives into two parts based on the origins,
and joins these parts.

4.2. Equijoin Operator
Equijoin is a special case of ✓-join where ✓ is “=”. The strategies for MapReduce im-
plementations of the equijoin operator follows earlier parallel database implementa-
tions [Schneider and Dewitt 1989]. Given tables R and S, the equijoin operator creates
a new result table by combining the columns of R and S based on the equality com-
parisons over one or more column values. There are three variations of equijoin imple-
mentations (Figure 4): repartition join, semijoin-based join, and map-only join (joins
that only require map side processing).

4.2.1. Repartition Join. Repartition Join [Blanas et al. 2010] is the default join algo-
rithm for MapReduce in Hadoop. The two tables are partitioned in the map phase,
followed by shuffling the tuples with the same key to the same reducer that joins the
tuples. As shown in Figure 7, repartition join can be implemented as one MapReduce
job. Since this is the most basic equijoin implementation in MapReduce, we discuss
it in some detail and analyze the total I/O cost of each step (in the cost analysis, we
assume that the data are uniformly distributed on the join key, and the CPU cost are
ignored):

Table VI. Notations for Cost Analysis
Symbols Definition
c

hdfsRead

The I/O cost of reading files in HDFS
c

local

The I/O cost of processing the data locally
c

shuffle

The cost of network shuffling per byte
c

hdfsWrite

The I/O cost of writing files to HDFS
|R| Number of tuples in table R

|Tuple

R

| Average size of each tuple in table R
KeyV alue

R

The size of key/value pair generated by the mapper for table R
Sel

R

The selectivity of R in the map function
Sel

join

The join selectivity
m Number of mappers
B Chunk size of multiway sorting

Size

output

Average size of join output tuple

(1) Map. Two types of mappers are created in the map phase, each of which is re-
sponsible for processing one of the tables. For each tuple of the table, the mapper
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outputs a key/value pair (K, hT, V i), where K is the join attribute value, V is the
entire tuple, and T is the tag indicating the source relation of the key/value pair.
More specifically, the map phase consists of the following steps:
(a) Scanning the data from HDFS and generating the key/value pair. Suppose the

I/O cost of reading files in HDFS is c
hdfsRead

per byte, the number of tuples in
table R is |R|, and the size of each tuple is |Tuple

R

| (Table VI shows the detailed
notations used in this section). Then the cost of scanning table R is

C
scan

= c
hdfsRead

⇥ |R|⇥ |Tuple
R

|.
(b) Sorting the map output (i.e., set of key/value pairs). On the map side, the output

of each mapper needs to be sorted before being shuffled to the reducers. Let the
chunk size of multiway sorting be B and the selectivity of R in the map function
be Sel

R

. Suppose the I/O cost of processing the data locally is c
local

per byte.
Let KeyV alue

R

denote the size of key/value pairs generated by the mapper. If
m mappers are employed, the size of the data generated by each map task for
R is:

Size
map�output

= (|R|/m)⇥ Sel
R

⇥KeyV alue
R

Thus, the cost of this phase is:
C

sort�map

= c
local

⇥ (m⇥ Size
map�output

⇥ log
B

(Size
map�output

/(B + 1)))

(2) Shuffle. After the map tasks are finished, the generated data are shuffled to the
reduce tasks. If the cost of network shuffling is c

shuffle

per byte, the cost of the
shuffling phase is:

C
shuffle

= m⇥ Size
map�output

⇥ c
shuffle

(3) Reduce. The reduce phase includes the following steps:
(a) Merge. Each reducer merges the data that it receives using the sort-merge

algorithm. Assume that the memory is sufficient for processing all sorted runs
together. Then the reducer only needs to read and write data into local file
systems once. Thus, the cost of merging is:

C
merge�reduce

= 2⇥ c
local

⇥ (m⇥ Size
map�output

)

(b) Join. After the sorted runs are merged, the reducer needs two phases to com-
plete the join. First, the tuples with the same key are split into two parts based
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on the tag indicating its source relation. Second, the two parts are joined lo-
cally. Assuming that the number of tuples for the same key are small and can
fit in memory, this step only needs to scan the sorted run once. Since the data
generated from the preceding merge phase can be directly fed to this join phase,
the cost of scanning this sorted run is ignored:

C
reduce�join

= 0

(c) Write to HDFS. Finally, the results generated by the reducer should be written
back to the HDFS. If the I/O cost of writing files to HDFS is c

hdfsWrite

per byte
and the join selectivity is Sel

join

, the cost of this final stage is:
C

reduce�output

= c
hdfsWrite

⇥ (|R|⇥ Sel
R

⇥ |S|⇥ Sel
S

⇥ Sel
join

⇥ Size
output

)

where Size
output

denotes the average size of join output tuple. The cost analysis
is summarized in Table VII. More detailed analysis can be found in [Afrati and
Ullman 2010; Li et al. 2011; Wu et al. 2011].

Table VII. Summarization of Cost Analysis
Phases I/O Cost

Map C

scan

= ⇥|R|⇥ |Tuple

R

|
Size

map�output

= (|R|/m)⇥ Sel

R

⇥KeyV alue

R

C

sort�map

= c

local

⇥ (m⇥ Size

map�output

⇥ log

B

(Size
map�output

/(B + 1)))
Shuffling C

shuffle

= m⇥R

map�output

⇥ c

shuffle

Reduce C

merge�reduce

= 2⇥ c

local

⇥ (m⇥ Size

map�output

)
C

reduce�join

= 0
C

reduce�output

= c

hdfsWrite

⇥ (|R|⇥ Sel

R

⇥ |S|⇥ Sel

S

⇥ Sel

join

⇥ Size

output

)

The repartition join algorithm discussed above relies on a tag that is generated and
inserted into each key/value pair to indicate its source. This ensures that once the tu-
ples are partitioned based on the keys, those with the same key from different sources
can be joined. However, it also degrades the performance of MapReduce since more
data (tags) are shuffled to the reducers. An alternative approach, called Map-Reduce-
Merge [Yang et al. 2007], has been proposed to eliminate this drawback.

Map-Reduce-Merge adds a merge phase after the reduce phase. The functions of each
phase in Map-Reduce-Merge are shown in Table VIII and discussed next.

Table VIII. Map-Reduce-Merge Functions
Map (k1, v1)

r

! list(k2, v2)
r

Reduce (k2, list(v2))
r

! (k2, list(v3))
r

Merge (k2, list(v3))
r

, (k2, list(v3))
s

! list(v4)

Suppose there are two data sources, R and S. The map phase and reduce phase in
Map-Reduce-Merge are similar to the original algorithm described above. The map-
per’s output data are shuffled to different reducers according to the partition key, and
sorted, hashed or grouped by the reducers. However, reducers do not write the output
to HDFS; instead, they store the output locally. Then, at merge phase, according to
the partition selector, the reducer outputs are shuffled to the mergers. The data from
different reducers are merged and written to HDFS.

In the merge phase, each data source can be individually pre-processed prior to
merging in order to implement a specific function. For example, if hash-join is pre-
ferred, the processor for the smaller relation, say S, can build a hash table on its data
(in this case, no processing is required for R). The merger can use this hash table to
join R with S.

ACM Computing Surveys, Vol. 0, No. 0, Article A, Publication date: 0.



www.manaraa.com

A:20 Feng Li et al.

Key Value
1 R1
3 R2
1 R3
4 R4 M

ap
R

ed
uc

e Key
1
3
4

R

Job 1
Full MapReduce job

Extracting join keys

Key 1 3 4

Key Value
1 S1
2 S2

m
ap Key Value

1 S1

Mapper 1

S

Broadcasting keys of R to all the
splits of S and join S with keys of R

Key 1 3 4

Key Value
3 S3
4 S4

m
ap

Key Value
3 S3
4 S4

Mapper 2

S

Job 2
Map-only job

Key Value
1 S1
3 S3
4 S4

Key Value
1 R1
3 R2

m
ap

Result
R1 S1
R2 S3

Mapper 1
S

R

Broadcasting the results of the
previous job (S0 ) to all the splits

of R, and locally joining R with S

Mapper 2

Job 3
Map-only job

Fig. 8. Data Flow of Semijoin-Based Join

Adding the merge phase makes it easier to program relational operator implementa-
tions. Repartition join using Map-Reduce-Merge can simply be implemented as follows:
(1) Map. This is identical to the original repartition join discussed above.
(2) Reduce. In the reduce phase, data pulled from the mappers for the same table are

automatically merged into one sorted run.
(3) Merge. The merger reads two sorted runs from the two tables in the same key

range, and joins them.
Map-Reduce-Merge works better for more complex queries (such as the queries that

first need a group-by over a table, followed by a join of the two tables) because it has
one more phase than MapReduce. The group-by is accomplished by the reducer while
the join is accomplished by the merger.

4.2.2. Semijoin-based Join. Semijoin-based join has been well studied in parallel
database systems (e.g., [Bernstein and Chiu 1981]), and it is natural to implement
it on MapReduce [Blanas et al. 2010]. The semijoin operator implementation consists
of three MapReduce jobs (Figure 8). The first is a full MapReduce job that extracts
the unique join keys from one of the relations, say R, where the map task extracts
the join key of each tuple and shuffles the identical keys to the same reducer, and the
reduce task eliminates the duplicate keys and stores the results in DFS as a set of
files (u0, u1, ..., uk

). The second job is a map-only job that produces the semijoin results
S0 = S n R. In this job, since the files that store the unique keys of R are small, they
are broadcast to each mapper and locally joined with the part of S (called data chunk)
assigned to that mapper. The third job is also a map-only job where S0 is broadcast
to all the mappers and locally joined with R. This algorithm can be further improved.
In the third phase, the results of (S n R) are joined with every chunk of R. However,
only a small portion of (S nR) have common join keys with a specific data chunk of R,
say R

i

. Thus, most comparisons are unnecessary and can be eliminated. Consequently,
in the first job, the mappers would partition the join keys of R

i

into separate files
(R

i

.u0, Ri

.u1, ..., Ri

.u
k

). In the second job, S would be joined with each R
i

.u
j

, and all
the joined results between S and R

i

, u
j

would be written to the same file named S
Ri ,

producing (S n R
i

). In the final job, each data chunk R
i

would only need to be joined
with S

Ri .
4.2.3. Map-only join. In the above join algorithms, the input data first need to be parti-

tioned based on the join key, and then shuffled to the reducers according to the parti-
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Fig. 9. Trojan Join Indexed Split

tion function. If the inner relation is much smaller than the outer relation, then shuf-
fling can be avoided as proposed in Broadcast Join [Blanas et al. 2010]. The algorithm
has only the map phase similar to the third job of semijoin-based algorithm (Figure 8).
Assuming S is the inner and R is the outer relation, each mapper loads the full S table
to build an in-memory hash and scans its assigned data chunk of R (i.e., R

i

). The local
hash-join is performed between S and R

i

;
Map-only join can also be used if the relations are already co-partitioned based on

the join key. In Hadoop++ [Dittrich et al. 2010], Trojan join is implemented to join the
co-partitioned tables. In this case, for a specific join key, all tuples of R and S are co-
located on the same node. The scheduler loads the co-partitioned data chunks of R and
S in the same mapper to perform a local join, and the join can be processed entirely on
the map side without shuffling the data to the reducers. This co-partitioning strategy
has been adopted in many systems such as Hadoop++ [Dittrich et al. 2010].

Co-partitioning prior to join is implemented by one MapReduce Job: the map function
implements the same logic as the repartition join, while the reduce function takes
these key-list pairs as input and transforms each of these key-list pairs into a co-group
by merging the tuples from both tables R and S into one list if they have the same key.
As shown in Figure 9, each co-group contains the tuples with the same key from both
tables, and the tuples from different tables are distinguished by their tags. Finally, the
co-partitioned splits, each of which consists of several co-groups, are written to HDFS.
At this point, each co-partitioned split contains all the tuples from both R and S for a
specific join key, and the join query can be directly processed by the mappers.

Table IX. Comparison of Equijoin Algorithms
Algorithm Advantage Constraint

Repartition Join It’s the most general join method It is not efficient enough in some
circumstance

Semijoin-based
Join

It is efficient when the semijoin result
is small

It requires several MapReduce jobs.
The semijoin result should be

computed first
Broadcast Join It only involves a map-only job One table should be small enough to

fit into memory
Trojan Join It only involves a map-only job The relations should be co-partitioned

in advance

Table IX shows the comparison of the equijoin algorithms. Each algorithm has its ad-
vantages and constraints. To obtain the best implementation, the statistics of the data
must be collected, and the cost of each algorithm should be estimated using similar
analysis method as Section 4.2.1.

4.3. Similarity join
In many applications the join condition may be inexact, and it is sufficient for the at-
tribute values to be “similar”. For this purpose, the similarity of two join attributes
(R.A and S.B) is computed by a function, sim(R.A, S.B), and a threshold � is defined.
Typically, sim(R.A, S.B) simply computes the difference between the values of the two
attributes, but other more sophisticated similarity functions are also possible. Similar-
ity join is then defined as a join whose predicate is sim(R.A, S.B) � �.
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Similarity calculation on numeric attributes is straightforward. In the case of string-
valued attributes, the step is to convert strings into a set of tokens in order to sim-
plify the similarity computation. A number of tokenization approaches can be adopted
such as dividing the string into words (e.g., string “similarity join work” would be
tokenized into set {similarity, join, work}) or computing the q-grams, which are over-
lapping strings of length q (e.g., 3-gram set for the string “attribute” is {att, ttr, tri,
rib,ibu, but, ute}). In the following, “token” refers to the result of this phase.

The naive method to compute similarities is to carry out the computation between
all the tuples in R and all the tuples in S, but this incurs many unnecessary compu-
tations. A prefix filtering method [Bayardo et al. 2007; Chaudhuri et al. 2006; Xiao
et al. 2008] can be applied to reduce the number of involved tuples by pruning some
pairs without computing their similarity. For example, after tokenization, if tuple r1
consists of tokens {a,b,c,d}, tuple s1 consists of {e,g,f}, and the length of prefix is set to
2, the prefix for r1 is then {a,b} and the prefix of s1 is {e,g}. Since these two records do
not share a common token in their prefixes, they are not similar and can be pruned.

Similarity join can be parallelized as a sequence of MapReduce jobs [Vernica et al.
2010; Metwally and Faloutsos 2012; Afrati et al. 2012].We review first of these [Ver-
nica et al. 2010] as one example to demonstrate the idea. The parallel similarity join
consists of three stages:

(1) Token Ordering. The first stage is to sort the tokens of the join attribute across all
the tuples in tables R and S. Sorting removes the duplicate tuples, which have the
same set of tokens but in a different sequence (e.g., tuples {a,b} and {b,a} need to
be recognized as the same tuple in the remainder of the algorithm). Frequencies of
token occurrences in each table are computed, starting with the smaller relation,
say S. This process is implemented as a word count MapReduce job that computes
the count of each token for the table, and sorts the results based on the count. The
result of the first job is used to prune table R: the tuples in R that do not have any
tokens appearing in table S are deleted. The tokens are then sorted based on the
frequencies in the remaining tuples of both R and S.

(2) Row id-Pair Generation. The second stage is the core of similarity join, which is
implemented as a MapReduce job illustrated in Figure 10. The map function scans
the tables and creates a key/value pair for every token in the tuple’s prefix. The
output key is the token, and the value is same as the input, namely (tag, RID,
tuple), where RID is the row id. The intermediate key/value pairs are sorted based
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on the key and shuffled to the reducers. The tuples that share common tokens
in the prefix are sent to the same reducers, which join the tuples with the same
common token and compute the similarity of each tuple pair. The output is a triple
(ID

R

, ID
S

,↵), where ID
R

and ID
S

are RIDs of the two corresponding tuples and
↵ is their similarity. The triples where ↵ < � are pruned. Finally, duplicate result
pairs are eliminated.

(3) Tuple Join. The final stage is to join the tuples in R and S using the triples gener-
ated in the second stage. This stage can be implemented by one MapReduce job as
shown in Figure 11. First, the set of generated triples are broadcast to all the map-
pers. The mappers scan R and S tables and the triples from the previous stage,
and use the RID pair as the map output key to partition the data. The reducer
uses the RID pair to join the original tuples from R and S. For example, for pair
(2, 5, 0.5) in Figure 11, the mapper generates two tuples, h(2, 5), (‘R’, 0.5, abc)i and
h((2, 5), (‘S’, 0.5, bcd)i. These two tuples are shuffled to the same reducer and the
result is computed as (2, abc, 5, bcd, 0.5).

In addition, algorithms have been proposed for finding top-k most similar pairs [Kim
and Shim 2012] and kNN join [Zhang et al. 2012a; Lu et al. 2012], in which the simi-
larity between the tuples is defined as their distance in a N�dimensional space, and
only the k nearest (the k most similar) tuples in S for each tuple in R are returned.

4.4. Multiway Join
The implementation of a multiway join is more complex than a binary join. It can be
implemented using either multiple MapReduce jobs (one for each join), or using only
one MapReduce job (the replicated join). In this section we review these two processing
strategies for multiway equijoins. We then discuss a generalization to multiway ✓-join.

4.4.1. Multiple MapReduce Jobs. Multiway join can be executed as a sequence of equi-
joins, e.g., R 1 S 1 T can be implemented as (R 1 S) 1 T . Each of these joins is
performed by one MapReduce job. The result of each MapReduce job (e.g., R 1 S) is
treated as input for the next MapReduce job. As usual, different join orders lead to
different query plans with significantly different performance. To find the best join
order, we need to collect the statistics of the data (e.g., histograms appropriate for
MapReduce [Jestes et al. 2011]), and estimate the processing cost of each possible plan
using a cost model. In Section 4.2.1, we analyzed the cost of binary join using the
repartition approach. The same estimation process can be applied to the other join ap-
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proaches (e.g., semijoin). Using the model for binary join, we can step-by-step calculate
the cost of the multiway join.

Many plan generation and selection algorithms that were developed for relational
DBMSs can be directly applied here to find the optimal plan. These optimization algo-
rithms can be further improved in a MapReduce system [Wu et al. 2011]; in particular,
more elaborate algorithms may be deployed for two reasons. First, the relational opti-
mization algorithms are designed to run fast to balance query optimization time versus
query execution time. MapReduce jobs usually run longer than relational queries, jus-
tifying more elaborate algorithms (i.e., longer query optimization time) if they can re-
duce query execution time. Second, in most relational DBMSs, only left-deep plans are
typically considered to reduce the plan search space and to pipeline the data between
operators. There is no pipeline between the operators in the original MapReduce, and,
as we indicated above, query execution time is more important. Thus, the bushy plans
are often considered for their efficiency.

4.4.2. Replicated Join. Replicated Join [Jiang et al. 2011; Afrati and Ullman 2010] per-
forms multiway join as a single job. We demonstrate the operation of replicated join
using the 3-way join R 1 S 1 T . The data flow of the replicated join for this query is
shown in Figure 12.

To support replicated join, in the map phase, the Partitioner module is modified.
Suppose the Sids (the keys of S) are partitioned into N

s

groups, Rids (the keys of R)
are partitioned into N

r

groups, and the number of reducers in the system is N
r

⇥ N
s

.
The partition key of the MapReduce job is the pair (Rid%N

r

, Sid%N
s

). Each tuple of T
is shuffled to a specific reducer since it contains both Rid and Sid. However, the parti-
tion keys of tuples in S have the format (null, Sid%N

s

), so each such tuple is shuffled
to N

r

reducers (namely, they are replicated at multiple reducers). Similarly, the tuples
of table R are shuffled to N

s

reducers. In this way, each reducer can receive all the nec-
essary tuples for a (Rid, Sid) pair and join tuples from three tables locally. Compared
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to the implementation with multiple MapReduce jobs, replicated join reduces the cost
of writing the intermediate results to HDFS by reducing the number of jobs. Using a
cost analysis similar to the one described in Section 4.2.1, we compute the cost saved
by the replicated join as:

C
less_written

= |S|⇥ |R|⇥ Sel
S

⇥ Sel
R

⇥ Sel
join

⇥ Size
output

⇥ c
hdfsWrite

However, the replicated join shuffles and sorts more data compared to the basic strat-
egy, so its cost is

C
more_shuffled = ((N

s

�1)⇥|R|⇥KeyV alue
R

+(N
r

�1)⇥|S|⇥KeyV alue
S

)⇥(c
shuffle

+c
sort

)

Thus, replicated join is preferred only if C
less_written

> C
more_shuffled.

In replicated join, given the number of computation nodes, a proper allocation of N
r

and N
s

can minimize the shuffled data. For instance, in the above example query, if R
is much smaller than T , then N

r

is set to 1. As a result, the data of R are replicated to
all the reducers, while the data shuffled for T are the same as join using multiple jobs.

In many MapReduce implementations, jobs are scheduled using a FIFO strategy.
Although the join implementation with multiple jobs scans the same amount of data
as replicated join, the second job of the multiple jobs method has to wait until the first
job is finished, which reduces the response time between the submission of the query
and the collection of the final result. For example, suppose that each table needs 10
mappers, all the mappers run for the same time, and there are 15 nodes in the system.
The normal join method needs three rounds to finish the scan, while the replicated
join only needs 2 rounds ((10 + 10 + 10)/15). In addition, since the reducers start to
pull the data once a mapper is finished, the data generated from the mappers in the
first round are shuffled to the reducers concurrently with the execution of the mappers
in the second round. Thus, although replicated join shuffles more data, it improves
the join performance by reducing the intermediate results and better exploiting the
parallelism.

A special case of replicated join is star join where all join conditions are on the same
attributes (e.g., tables R(x, y), S(x, z) and T (x, u) are joined on attribute x). By setting
the map output key to be the join attribute, the star join can be implemented by one
MapReduce job. In case the data are skewed, a load balanced algorithm can be used
[Koutris and Suciu 2011]. The algorithm first estimates the frequent values in R,S
and T . If a value (e.g., a) is frequent in R, the tuples (x = a) for tables S and T are
broadcast to all the reducers, but the tuples (x = a) for table R are partitioned to the
reducers by a different strategy (such as round robin). The join results for x = a are
the combinations of the partial results of all the reducers.

4.4.3. Generalization to ✓-Join. In the above two subsections, we discussed the multiway
equijoin where the join condition is restricted to “=”. An improvement to the above
works is multiway ✓-join where ✓ 2 {<,,=,�, >, 6=}. Similar to multiway equijoin,
the multiway ✓-join can also be implemented in two ways [Zhang et al. 2012b]: (1)
each ✓-join is processed by one MapReduce job (as discussed in cross-product), and a
cost model is proposed to decide the best join order; or (2) the joins are implemented
in one MapReduce job. To implement the multiway ✓-join in one MapReduce job, an
extended version of the one-bucket join [Okcan and Riedewald 2011] discussed earlier
is adopted. In the one-bucket join, the join matrix has only two dimensions, which are
partitioned to k reducers. In contrast, here the join matrix has r dimensions corre-
sponding to the number of relations involved in the multiway join. The r-dimensional
matrix is evenly partitioned to k reducers, and the data of each relation are shuffled to
a reducer if it overlaps with the partitions assigned to that reducer.
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In addition, a hybrid method has also been proposed: a multiway ✓-join is imple-
mented by a few MapReduce jobs, and one MapReduce job may process the ✓-join
for more than two relations. For example, the implementation of a multiway ✓-join
R 1

✓

S 1
✓

T 1
✓

W may consist of two MapReduce jobs, where the first one computes
Result1 = R 1

✓

S 1
✓

T , and the second one computes Result1 1
✓

W . The search space
of this hybrid method is much larger than the the case when each MapReduce job exe-
cutes one ✓�join, and the proposed techniques explore a majority of the possible plans
to achieve the near optimal performance.

5. DBMS IMPLEMENTATIONS ON MAPREDUCE
The implementation of database operators using MapReduce framework facilitates the
development of efficient full-fledged MapReduce-based DBMSs. In their simplest form,
these consist of only a SQL parser, which transforms the SQL queries into a set of Map-
Reduce jobs. Examples include Hive [Thusoo et al. 2009] and Google’s SQL translator
[Chattopadhyay et al. 2011]. In a more complete form, a MapReduce-based DBMS
natively incorporates existing database technologies to improve performance and us-
ability, such as indexing, data compression, and data partitioning. Examples include
HadoopDB [Abouzeid et al. 2009], Llama [Lin et al. 2011], and Cheetah [Chen 2010].
Some of these systems follow the traditional relational DBMS approach of storing data
row-wise (e.g., HadoopDB), and are, therefore, called row stores. Others (e.g., Llama)
store data column-wise, and are called column stores. It is now generally accepted that
column-wise storage model is preferable for analytical applications that involve aggre-
gation queries because (a) the values in each column are stored together and a specific
compression scheme can be applied for each column, which makes data compression
much more effective, and (b) it speeds up the scanning of the table by avoiding access
to the columns that are not involved in the query [Stonebraker et al. 2005]. Column-
oriented storage has been widely applied to many large scale distributed systems (such
as Dremel [Melnik et al. 2011]), and they can significantly improve the performance
of MapReduce [Floratou et al. 2011]. In addition to pure row stores and column stores,
some systems adopt a hybrid storage format (e.g., Cheetah): the columns of the same
row are stored in the same data chunk, but the format of each data chunk is column-
oriented. An improvement to this format is to combine a few columns that are fre-
quently accessed together into a column group, which reduces the CPU cost of re-
constructing the tuples. Furthermore, since MapReduce usually replicates each data
chunk, different replicas can have different combination of column groups so that the
query can access the best suitable replica [Jindal et al. 2011].

A full DBMS implementation over MapReduce usually supports the following func-
tions: (1) a high level language, (2) storage management, (3) data compression, (4) data
partitioning, (5) indexing, and (6) query optimization. In this section, we review the re-
cent research work on building MapReduce-based DBMS focusing on these functions.

5.1. HadoopDB
HadoopDB [Abouzeid et al. 2009] introduces the partitioning and indexing strategies
of parallel DBMSs into the MapReduce framework. Its architecture consists of three
layers. The top layer extends Hive to transform the queries into MapReduce jobs.
The middle layer implements the MapReduce infrastructure and DFS, and deals with
caching the intermediate files, shuffling the data between nodes, and fault tolerance.
The bottom layer is distributed across a set of computing nodes, each of which runs
an instance of PostgreSQL DBMS to store the data. The following summarizes how
HadoopDB supports the functions listed above.
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(1) High level language. HadoopDB adopts HiveQL as its high-level query language.
It transforms HiveQL queries into local plans executed on each MapReduce node.
Since HadoopDB stores the data in DBMS instances on each node, the local plans
are different than those generated by Hive (see earlier discussion). For instance,
the local plan in HadoopDB might be a “select” query instead of the file scan that
Hive performs.

(2) Data partitioning. HadoopDB horizontally partitions a table into chunks based on a
given key. Even in the presence of skewed data distribution across keys, HadoopDB
attempts to ensure uniform sized chunks for better load balancing during query
execution, which is different than MapReduce’s default hash-partitioning that ig-
nores skew. Furthermore, it can co-partition several tables together based on the
join keys, so that the tables can be joined by a map-only job like the Trojan join.

(3) Storage management. Each chunk obtained as a result of partitioning is assigned
to one node, and stored in the PostgreSQL instance at that node.

(4) Data compression. Data compression is not used in HadoopDB since it uses a tradi-
tional row-oriented database system for storage, while data compression is better
suited for column stores (in their latest demo [Abouzied et al. 2010], the data com-
pression can be achieved when they use column-oriented database instead of Post-
greSQL, but in this section we only discuss the case when row-oriented database
is used).

(5) Indexing. Building of local indexes for each data chunk is left to PostgreSQL; these
indexes can later be used during query processing.

(6) Query optimization. HadoopDB performs both global optimization and local opti-
mization of submitted queries. For global optimization, it inherits the rule-based
strategies from Hive, such as pushing predicates closer to table scans and pruning
unused columns early. The map phase utilizes PostgreSQL for query processing,
while the shuffle and the reduce phases are handled by MapReduce infrastructure.
To fully utilize the PostgreSQL instances on the nodes, as much of the work as pos-
sible is performed in the map phase. For example, if the tables are co-partitioned
on the join key, the join queries are transformed to a map-only job. Each database
instance joins the tables stored on that node without shuffling any data over the
network. When the tables are not co-partitioned, HadoopDB has two implemen-
tations for the join query. The first implementation is similar to the repartition
join: each mapper scans the part of the local table in the DBMSs at that node and
shuffles the data to reducers, while the reducers join the tables without using the
DBMS instance. The second implementation is similar to Trojan join: one Map-
Reduce job is launched to re-partition the two tables on the join key, and another
map-only job is launched to join the two tables.
Local optimization of plans on each node is performed by PostgreSQL query opti-
mizer. The local indexes can be used for index scan, index join, etc.

HadoopDB combines the advantages of both MapReduce and conventional DBMSs.
It scales well for large datasets and its performance is not affected by node failures
due to the fault tolerance of MapReduce. By adopting the co-partitioning strategy, the
join operator can be processed as a map-only job. Moreover, at each node, local query
processing automatically exploits the functionality of PostgreSQL.

5.2. Llama
Llama [Lin et al. 2011] is a column store implementation on top of MapReduce with
the following functionality:
(1) High level language. Llama does not have a SQL-like query language, and expects

users to write the map and reduce functions. However, it changes the input for-
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mat of these functions to be column-based. It also implements a specific interface
called LlamaInputs to facilitate easy composition of join queries using column-wise
storage.

(2) Storage management. Llama uses a specific file structure, CFile, as the storage
unit. Each CFile is a DFS file that contains only the data of a single column. The
CFile is split into several data chunks and each data chunk contains a fixed num-
ber of records, say k. The location of each chunk is recorded so that it can be directly
located. By default, the data of a CFile is sorted by the primary key of the table. To
retrieve the column value of nth tuple, the (n%k)th value in the d(n/k)eth chunk is
returned.

(3) Data partitioning. Each table is vertically partitioned into several groups, and each
group consists of multiple CFiles corresponding to the columns of that group. In a
vertical group, all the CFiles are sorted by the primary key of the group. There are
two types of vertical groups. The basic group includes the CFiles of all the columns
in the table. The primary-foreign key (PF) group is defined to include the CFiles
of the foreign key, primary key and some other columns in the query predicates.
CFiles in a PF group are sorted by the join key. This strategy enables a map-only
join that greatly reduces the processing overhead. To facilitate join processing, PF
groups are dynamically created based on the statistics of the query patterns. How-
ever, PF groups replicate the data of basic groups and incur additional storage
cost. If the groups are not used for a long time, they are automatically discarded to
reduce storage cost.

(4) Data compression. Llama compresses each chunk of the CFile. As noted earlier,
since the values of the a column may typically contain similar patterns, compres-
sion is effective. Furthermore, each column can have a specific data compression
scheme that is best suited for the data in that column.

(5) Indexing. In each CFile, a chunk index is added to the end of each chunk, which
maintains the summary information of data in the chunk.
An alternative compression and indexing technique in Llama is BIDS [Lu et al.
2013], which builds a bitmap index for each column. The advantage of BIDS is
its compact size, especially for the columns with limited unique values. Since data
can be recovered directly from BIDS, the index can be considered a compression
technique as well.

(6) Query optimization. Llama uses several optimization strategies. First, using an in-
dex it filters CFiles and only scans those that are relevant to the query, thus reduc-
ing I/O costs. Second optimization relates to the column-wise storage model that it
uses. In column store systems it is necessary to employ a materialization process
to concatenate the column values of the same tuple together. This can be achieved
by early materialization (EM) or late materialization (LM). EM materializes the
columns of a tuple at the beginning of the MapReduce job, while LM materializes
the columns on demand. For instance, to process a join query, EM materializes all
the necessary columns in the map phase, while LM only materializes the join keys
and the columns that appear in selection predicates. In the reduce phase, LM re-
trieves the other columns for the tuples appearing in the query results. Compared
to EM, LM scans less data in the map phase, but incurs higher random read cost
when retrieving the columns in the reduce phase. Llama uses a cost function to
choose the appropriate strategy for a given query.
The use of column-wise storage model allows the implementation of multiway join
in a single MapReduce job, thereby reducing the number of jobs and the total pro-
cessing cost. For example, to process a join over a star schema that contains a high
cardinality fact table (i.e., a large number of tuples) and a few lower cardinality
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but higher degree (i.e., high number of attributes) dimension tables, a map-only
join is used to join the fact table with the dimension tables using the correspond-
ing PF groups. Then, the intermediate results of the join are sent to the reducers to
merge. In the reduce phase, the join results are combined based on the fact table’s
primary key.

5.3. Cheetah
Cheetah [Chen 2010] is a system specially designed for analysis applications that use
a star schema or snowflake schema. Star schema characteristics were discussed ear-
lier; in contrast, in a snowflake schema, one attribute can be represented by several
dimension tables with parent-children relationships. Cheetah functionality includes
the following:

(1) High level language. Cheetah defines a single block SQL-like language; hence
nested queries are not supported. There is no support for join queries either. In-
stead, a view is defined on top of the fact table and dimension tables that hides the
schema and the necessity for joins; users can write queries on top of the views.

(2) Storage management. Cheetah adopts a hybrid storage method that uses both row-
based and column-based storage. The data are first horizontally partitioned into
different chunks such that each chunk contains a set of rows. Each chunk is then
stored in a column-oriented format.

(3) Data compression. Each column in a chunk can be compressed by one of the follow-
ing methods: dictionary encoding [Abadi et al. 2006], run length encoding [Graefe
and Shapiro 1991], and default value decoding [Raman and Swart 2006]. The com-
pression type is determined by the type and statistics of the column. After each
column is compressed, the entire chunk is further compressed.

(4) Data partitioning. The fact table and the big dimension tables are co-partitioned
so that the join query between the fact table and the dimension tables can be pro-
cessed by a map-only job (similar to Trojan join). The remaining dimension tables
are relatively small, and can be directly loaded into memory at each compute node.

(5) Query optimization. Two unique aspects of Cheetah query optimization are the
exploitation of materialized views and multi-query optimization. The former is
straightforward, so we only discuss the latter. If a number of queries access the
same input table, they use the same mappers to scan the table and use a query ID
to indicate where the tuple is used. Then the tuple is partitioned according to the
query ID and processed by different reducers in different queries.
A typical query consists of three parts: the source table, the filters, and the ag-
gregation attributes [Nykiel et al. 2010]. Thus, three levels of sharing is possible:
(1) Sharing scans only – The queries have the same source table while the filters
and the aggregation attributes are different; (2) Sharing map output – The queries
have the same source table and the same aggregation attributes (including both
the grouping keys and the aggregated columns), while the filters are different; and
(3) Sharing map functions – The main purpose of the map function here is to filter
the tuples based on the predicates. If the queries have the same source table and
the same filters, the map functions can be shared between these queries. However,
sharing scan or the map output is not always better than the original method that
shares nothing. The cost analysis discussed in Section 4.2 can be applied here to
choose the better alternative. In addition, to share the scan operation, queries have
to be processed in batch, which delays some queries and increases their response
times. Instead of merely sharing scans to reduce I/O, response time of the queries
can also be considered: those requiring quick response are processed immediately
after they are submitted to the system [Wang et al. 2011] .
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5.4. Comparisons of the Systems

Table X. Comparison of MapReduce DBMS Implementations
HadoopDB Llama Cheetah

Language SQL-like Simple interface SQL
Storage Row store Column store Hybrid store

Data com-
pression

No Yes Yes

Data
partition

Horizontally partitioned Vertically partitioned Horizontally partitioned
at chunk level

Indexing Local index in each
database instance

Local index + Bitmap
index

Local index for each
data chunk

Query opti-
mization

Rule based optimization
plus local optimization

by PostgreSQL

Column-based
optimization, late

materialization and
processing multiway

join in one job

Multi-query
optimization,

materialized views

The detailed comparison of the three systems is shown in Table X. In systems that
support a SQL-like query language, user queries are transformed into a set of Map-
Reduce jobs. These systems adopt different techniques to optimize query performance,
and many of these techniques are adaptations of well-known methods incorporated
into many relational DBMSs. The storage scheme of HadoopDB is row-oriented, while
Llama is a pure column-oriented system. Cheetah adopts a hybrid storage model
where each chunk contains a set of rows that are vertically partitioned. This “first
horizontally-partition, then vertically-partition” technique has been adopted by other
systems such as RCFile [He et al. 2011]. Both Llama and Cheetah take advantage of
superior data compression that is possible with column-storage.

6. MAPREDUCE EXTENSIONS FOR DATA-INTENSIVE APPLICATIONS
As discussed earlier, MapReduce is capable of processing certain data-intensive work-
loads efficiently. These workloads can be implemented by a MapReduce job that con-
sists of a map and a reduce function, followed by writing the data back to the distributed
file system once the job is finished. However, this model is not well suited for a class of
emerging data-intensive applications that are characterized by iterative computation
requiring a chain of (i.e., multiple) MapReduce jobs (e.g., data analysis applications
such as PageRank [Page et al. 1999]) or online aggregation. Extending MapReduce to
cover this class of applications is currently an active research topic. Hence, we discuss
them in this section.

6.1. Iterative Computation
Figure 13 shows an iterative task with three iterations that have two features: (1)
the data source of each iteration consists of a variant part and an invariant part—the
variant part consist of the files generated from the previous MapReduce jobs (the gray
arrows in Figure 13), and the invariant part is the original input file (the black arrows
in Figure 13); (2) a progress check might be needed at the end of each iteration to detect
whether a fixed point has been reached. The fixed point has different meanings in
different applications, such as whether the PageRank value has converged, or whether
the within-cluster sum-of-squares is minimized in k-means clustering. As can be seen
in Figure 13, an additional job is needed at the end of each iteration to compare the
results generated between the current job and the previous one. The algorithm for the
job controller of a simpler iterative computation with only k iterations without the fixed
point is given in Algorithm 3. Recall that the job controller sets the input path, input

ACM Computing Surveys, Vol. 0, No. 0, Article A, Publication date: 0.



www.manaraa.com

Distributed Data Management Using MapReduce A:31

Job 1 Job 2 Job 3

Check
Fixed
Point

Check
Fixed
Point

Check
Fixed
Point

DFS: Invariant Files

Job 1 Result

Job 2 Result

Job 3 Result

DFS: Variant Files

continue continue end

Fig. 13. Map Reduce Processing for Iterative Computation

format, class containing map and reduce function, etc. In the algorithm, the function
addInputPath sets the path of the input file for the MapReduce job, setOutputPath sets
the path of the output file, and waitForCompletion waits the job to complete.

ALGORITHM 3: Job Controller for Iterative Computation in MapReduce
input: String InvariantPath, String IterativePath

1 begin
2 i 0;
3 while fixed point not reached do
4 job1 new Job("Iterative Computation");
5 set mapper class, reducer class, input format, output format, etc for job1;
6 if i 6= 0 then job1.setIterativePath(IterativePath + (i - 1));
7 job1.setInvariantPath(InvariantPath);
8 job1.setOutputPath(IterativePath + i);
9 job1.execute();

10 job2 new Job("Checking Fixed Point");
11 set mapper class, reducer class, input format, output format, etc for job2;
12 job2.execute();
13 i i + 1;
14 end
15 end

HaLoop [Bu et al. 2010] is a MapReduce variant developed specifically for iter-
ative computation and aggregation. In addition to the map and reduce functions,
HaLoop introduces AddMap and AddReduce functions that express the iterative com-
putation. To test the termination condition, the functions SetFixedPointThreshold,
ResultDistance, SetMaxNumOfIterations are defined. To distinguish the loop-variant
and loop-invariant data, AddStepInput and AddInvariantTable are introduced. Using
these functions, the job controller of Haloop for the iterative application in Figure 13
is expressed in Algorithm 4.

To avoid unnecessary scans of invariant data, HaLoop maintains a reducer input
cache storing the intermediate results of the invariant table. As a result, in each itera-
tion, the mappers only need to scan the variant data generated from the previous jobs.
The reducer pulls the variant data from the mappers, and reads the invariant data
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ALGORITHM 4: Job Controller for Iterative Computation in HaLoop
input: String InvariantPath, String IterativePath, Func IterativeMapFunc, Func

IterativeReduceFunc, Func ResultDistanceFunc

1 begin
2 job new Job();
3 job.AddMap(IterativeMapFunc, 1);

/* set the map function for the first MapReduce job in each iteration. There

might be several jobs in each iteration depending on the application */;
4 job.AddReduce(IterativeReduceFunc, 1);

/* set the reduce function for the first job */;
5 job.SetDistanceMeasure(ResultDistanceFunc);
6 job.AddInvariantTable(InvariantPath);
7 job.SetInput(IterativePath);
8 job.SetReducerInputCache(true) /* enable reducer input cache */;
9 job.SetReducerOutputCache(true) /* enable reducer output cache */;

10 job.Submit();
11 end

Map
Tasks

Mapper
Input
Cache

Reduce
Tasks

Check
Fixed
Point

Job 1

Reducer
Input
Cache

Reduce
Tasks

Reducer
Output
Cache

Map
Tasks

Check
Fixed
Point

Job 2

Reducer
Input
Cache

Reduce
Tasks

Reducer
Output
Cache

Map
Tasks

Check
Fixed
Point

Job 3

continue continue end

DFS: Invariant Files

Job 1 Result

Job 2 Result

Job 3 Result

DFS: Variant Files

Fig. 14. Iterative Computation in Haloop

locally. To reduce the time to reach a fixed point, the reducer output cache is used to
store the output locally in the reducers. At the end of each iteration, the output that
has been cached from the previous iteration is compared with the newly generated re-
sults to detect whether the fixed point is reached. As can be seen, both of these caches
need the mappers to shuffle the intermediate results with the same key to the same
reducer running on the same machine in different iterations. To assign the reducers to
the same machine in different iterations, the MapReduce scheduler is also modified.
However, when a node fails, the reducer input cache contents contained in this node
are lost. To solve this problem, the reducer input cache in the first iteration are stored
in DFS, so that the cached data can be reloaded to a new node from the DFS. HaLoop
also implements a mapper input cache that stores the input split of the mapper in the
local file system. The HaLoop scheduler can recognize these caches, and assign a map
task to the node that contains the input cache of the task. This strategy can enhance
data locality in HaLoop.

Figure 14 shows the revised execution flow in Haloop for the iterative computation
of Figure 13. In MapReduce Job1, the map tasks can either read the data from DFS
or the mapper input cache, depending on whether the mapper input cache exists. In
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MapReduce Job2, since the reduce tasks read data directly from reducer input cache,
the map tasks do not need to read the invariant files from DFS. The reducer output
cache is utilized to check the fixed point.

The experimental results show that HaLoop’s running time of iterative computa-
tions are better than MapReduce by a factor of 1.85 [Bu et al. 2010] . However, the
performance impact of cache reloading during the failure of the hosting node has not
been studied.

Spark [Zaharia et al. 2010] is another system for performing iterative computation
over a cluster. It introduces an storage abstraction called resilient distributed dataset
(RDD), which is a collection of tuples across a set of machines. When a RDD is con-
structed from HDFS as the input of the map function, the processing of the Spark job
is similar to that of MapReduce: the map function is used to process each tuple in each
partition of the RDD, and the reduce function is used for aggregation or other com-
putations. Similar to HaLoop, Spark can cache the intermediate RDD and re-use it in
subsequent iterations. In addition, this intermediate RDD can be cached in the local
memory of each node, making the processing even faster.

Twister [Ekanayake et al. 2010] is a similar system that provides support for itera-
tive processing. Users can write their map and reduce functions as in Hadoop, while the
iterative MapReduce jobs are automatically linked and processed transparent to the
users. It optimizes the iterative jobs by caching the resources (e.g., process stacks and
status) for the mappers and reducers. Since creating new mappers and reducers incurs
high overhead, these processes are reused throughout the computation. This strategy
is also adopted by many MPI (Message Passing Interface) applications. The reused
mappers and reducers can be configured to avoid loading static data (fixed input data
for each iteration) repeatedly.

6.2. Streams and Continuous Query Processing
Another extension to MapReduce has been to address continuous processing such
as stream processing [Stephens 1997; Golab and Özsu 2010] or online aggrega-
tion [Hellerstein et al. 1997; Wu et al. 2010b]. Recall that a sort-merge process is ac-
complished by the mapper and reducer modules. Given the key/value pairs, the map-
per generates new key/value pairs using the map function, groups them according to
the partition key, and sorts the pairs in each partition. Then, the reducers pull the
data from the mappers, and the sorted runs from different mappers are merged to one
sorted file. In this step, the reducers are blocked by the mappers: they have to start the
merge process after all the mappers finish their tasks. This blocking behavior between
the mapper and the reducer incurs some overhead and needs to be eliminated to sup-
port continuous query processing. MapReduce Online [Condie et al. 2010] addresses
this by pipelining intermediate data between operators. MapReduce Online supports
both the pipeline within one MapReduce job and the pipeline between consecutive jobs.

(1) Pipeline within a job. To support pipelining between the mappers and reducers,
MapReduce Online replaces pulling by the reducers with pushing by the mappers.
That is, each mapper directly sends the data to the reducers once it processes a
key/value pair, without sorting the data locally. As a result, the reducers have to
sort the data when they receive them. In this case, the combiner module cannot
be used since the data are shuffled to the reducers immediately. Furthermore, due
to the limited number of of the TCP connections per node, in a large cluster, the
mappers may not connect to all the reducers directly. Thus, in MapReduce Online,
a refined pipeline method is adopted. If the mapper cannot push the records to the
specified reducer immediately due to the TCP limitation, it stores these records
locally (called spill files). Then, the combiner module can be utilized to perform a
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local aggregation to the spills, reducing the size of the intermediate data shuffled
to reducers.

(2) Pipeline between jobs. If an application needs several MapReduce jobs, the re-
sults of the intermediate jobs are typically written into the DFS. Instead, Map-
Reduce Online supports data transfer from the reducers directly to the mappers of
the next job. As a result, pipelining is extended across multiple jobs, and more com-
plex continuous queries that incur several MapReduce jobs can be implemented.

One advantage of the pull model is fault tolerance: since a mapper shuffles its data
to reducers only if it completes the map task, the reducers will not receive any data
from this failed mapper. In contrast, when push is used, as in MapReduce Online, re-
ducers may receive some data from the failed mapper. To recover from the failure of a
mapper, the mapper state indicating whether it is completed needs to be maintained.
If the mapper has not completed its task, the reducers do not combine the spill files
shuffled from this mapper with others; they only store these spill files temporarily. If
the mapper finishes, the reducer merges the data with the others. Thus, when an in-
complete map task fails, the reducer simply ignores the data produced by this mapper,
and a new mapper is launched to execute this map task. To address the failure of the
reducer, the mappers have to store all the spill files locally until the entire job is fin-
ished, and these local files are shuffled to the new launched reducer in the event of a
reducer failure.

By supporting online aggregation through pipelining, the reducer can get the data
from the mapper continuously, and consequently, the user Only requires to specify
when a snapshot of the aggregation needs to be computed in the reducers. For example,
the snapshot could be computed and returned to the user when a certain percentage
of the input has been received by the reducer. Alternatively, rather than modifying the
pull model of MapReduce, each data chunk assigned to the mapper can be treated as
one unit in online aggregation [Pansare et al. 2011]. The snapshot is taken on the data
shuffled from the mappers that have finished processing the assigned data chunks.

An alternative method to support continuous query processing is to implement a
purely hash-based framework to replace the sort-merge process in MapReduce [Li et al.
2011]. The idea is to “group data by key, then apply the reduce function to each group”
while avoiding the overhead of sorting on the map side and blocking on the reducer
side. First, a hash function h1 is used to partition the map output into different groups
for different reducers. The key/value pairs in each group do not need to be sorted, which
eliminates the sort time during the map process. The reducer builds an in-memory
hash table H using hash function h2. For each key/value pair that comes from the
mapper, if the hash key exists in H, the state of the hash key is updated by a function
of the old state and the new value. Otherwise, the key/value pair is inserted into H if
it is not already full. If it is full, another hash function h3 is used to hash the key/value
pairs into some bucket in the local file system. Once the state of the key in H satisfies
some application-defined threshold, the computation for this key can be stopped. For
example, if a user who visits a web site 10 times a day is considered a frequent user,
the computation for counting the visits of that user can be stopped when this threshold
(10 times) is satisfied. To generate the results for frequent keys faster, the h2 function
can be modified to hash the frequent keys into H.

In addition to these systems that extend MapReduce for continuous and iterative
processing, there are other distributed stream processing systems that are inspired
by MapReduce but that go beyond the MapReduce framework. We shall briefly review
them in the next section.
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7. MAPREDUCE INFLUENCED DATA PROCESSING PLATFORMS
There are many other distributed data processing systems that have been inspired
by MapReduce but that go beyond the MapReduce framework. These systems have
been designed to address various problems, such as iterative processing over the same
dataset, that are not well handled by MapReduce, and many are still ongoing. In this
section, for the purpose of highlighting deviations from the MapReduce framework,
we shall briefly discuss some representative systems. In particular, we shall discuss
general purpose distributed processing platforms that have more flexible programming
model (e.g., Dryad [Isard et al. 2007] and epiC [Chen et al. 2010]), large-scale graph
processing systems (e.g., Pregel [Malewicz et al. 2010] and Distributed GraphLab [Low
et al. 2012]), and continuous data processing systems (e.g., S4 [Neumeyer et al. 2010]
and Storm7).

7.1. Generic Data Processing Platforms
An interesting line of research has been to develop parallel processing platforms that
have MapReduce flavor, but are more general. Two examples of this line of work are
Dryad [Isard et al. 2007] and epiC [Chen et al. 2010].

Dryad [Isard et al. 2007] represents each job as a directed acyclic graph whose
vertices correspond to processes and whose edges represent communication channels.
Dryad jobs (graphs) consist of several stages such that vertices in the same stage ex-
ecute the same user-written functions for processing their input data. Consequently,
MapReduce programming model can be viewed as a special case of Dryad’s where the
graph consists of two stages: the vertices of the map stage shuffles their data to the
vertices of the reduce stage.

Driven by the limitations of MapReduce-based systems in dealing with “varieties”
in cloud data management, epiC [Chen et al. 2010] was designed to handle variety of
data (e.g., structured and unstructured), variety of storage (e.g., database and file sys-
tems), and variety of processing (e.g., SQL and proprietary APIs). Its execution engine
is similar to Dryad’s to some extent. The important characteristic of epiC, from a Map-
Reduce or data management perspective, is that it simultaneously supports both data
intensive analytical workloads (OLAP) and online transactional workloads (OLTP).
Traditionally, these two modes of processing are supported by different engines. The
system consists of the Query Interface, OLAP/OLTP controller, the Elastic Execution
Engine (E3) and the Elastic Storage System (ES2) [Cao et al. 2011]. SQL-like OLAP
queries and OLTP queries are submitted to the OLAP/OLTP controller through the
Query Interface. E3 is responsible for the large scale analytical jobs, and ES2, the un-
derlying distributed storage system that adopts the relational data model and supports
various indexing mechanisms [Chen et al. 2011; Wang et al. 2010; Wu et al. 2010a],
handles the OLTP queries.

7.2. Graph Processing Platforms
A growing class of applications use graph data (e.g., social network analysis, RDF), and
the analysis of graphs has been a topic of considerable interest. Graph processing is of
iterative nature, and the same dataset may have to be revisited many times, and this
calls for a design that deviates from the phase-based stateless processing framework.

Pregel [Malewicz et al. 2010] operates on a large directed graph. A Pregel job is ex-
ecuted in several supersteps (iterations), and it is terminated when a certain condition
for the graph is satisfied. In each superstep, a user written compute function is applied
to the vertices. The compute function operates on each vertex and may update the ver-

7http://storm-project.net/
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tex state based on its previous state and the message passed to it from the preceding
vertices. As discussed in Section 6.1, an iterative query like PageRank computation
can also be implemented by a chain of MapReduce jobs, in which case the state and
the graph information must be reloaded every time a MapReduce job is started. In
contrast, in Pregel, the edges and the state of each vertex are stored across super-
steps during the lifetime of the Pregel job. Fault tolerance is achieved through periodic
checkpointing. Once a worker failure occurs, the state of the vertex values and edges
of the entire graph are recovered from the latest checkpoint (which may be a number
of supersteps before the failure). Checkpointing and synchronization are costly, which
may be reduced by trading between checkpointing and recovery.

The architecture of Distributed GraphLab [Low et al. 2012] is similar to Pregel
while the processing model is different: a user-defined update function modifies the
the state of a vertex based on its previous state, the current state of all of its adja-
cent vertices, and the value of its adjacent edges. An important difference between
GraphLab and Pregel is in terms of their synchronization model, which defines how
the vertices collaborate during processing. Pregel only supports Bulk Synchronization
Model (BSM) [Valiant 1990] Where after the vertices complete their processing of a
superstep, all vertices should reach a global synchronization status, while GraphLab
allows three choices: synchronized, asynchronized, and partially synchronized.

7.3. Continuous Data Processing Platforms
S4 [Neumeyer et al. 2010] is a distributed stream processing system that follows the
Actor programming model. Each keyed tuple in the data stream is treated as an event
and is the unit of communication between Processing Elements (PEs). PEs form a
directed acyclic graph, which can also be grouped into several stages. At each stage, all
the PEs share the same computation function, and each PE processes the events with
certain keys. The architecture of S4 is different from the MapReduce-based systems:
it adopts a decentralized and symmetric architecture. In S4, there is no master node
that schedules the entire cluster. The cluster has many processing nodes (PNs) that
contains several PEs for processing the events. Since the data are streaming between
PEs, there’s no on disk checkpoint for the PEs. Thus, the partial fault tolerance is
achieved in S4: if a PN failure occurs, its processes are moved to a standby server, but
the state of these processes is lost and cannot be recovered.

Storm is another stream processing system in this category that shares many fea-
tures with S4. A Storm job is also represented by a directed acyclic graph, and its fault
tolerance is partial due to the streaming channel between vertex. The difference is the
architecture: Storm is a master-slave system like MapReduce. A Storm cluster has a
master node (called Nimbus) and worker nodes (called supervisor).

7.4. Discussion
Table XI shows a quick summary on some common features of the systems discussed
in this section. Most of the systems use the directed acyclic graph (DAG) as their pro-
gramming model. Compared to MapReduce’s simplified programming model, the DAG
is more flexible and can express more complex queries. The features of Dryad and epiC
are mostly the same except that epiC also supports OLTP queries. The architecture
of these systems is usually master-slaves (influenced by MapReduce), but S4 adopts
the decentralized architecture. The fault tolerance strategy is quite different for differ-
ent systems. For Storm and S4, when node failure occurs, the processes on the failed
node are moved to standby nodes. However, as the data streamed between the vertices
are not cached, only the functionality of the failed node is recovered, while the states
are lost. Pregel and GraphLab use checkpointing for fault tolerance, which is invoked
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Table XI. Summary of Non-MapReduce Based Data Processing Platforms
Name Application Programming

Model
Architecture Fault Tolerance

Dryad General-purpose
parallel execution

engine

Directed acyclic
graph

Master-Slaves Node level fault
tolerance

epiC Large scale OLAP +
OLTP

Directed acyclic
graph

Master-Slaves Node level fault
tolerance

Pregel Large scale graph
processing engine

Directed graph Master-Slaves Checkpointing

GraphLab Large scale machine
learning and data
mining framework

Directed graph Master-Slaves Checkpointing

Storm Distributed
streaming processing

engine

Directed acyclic
graph

Master-Slaves Partial fault
tolerance

S4 Distributed
streaming processing

engine

Directed acyclic
graph

Decentralized and
symmetric

Partial fault
tolerance

at the beginning of some iterations. The iterations following a checkpoint need to be
repeated (when some vertices fail).

While MapReduce could not support all applications efficiently, it has generated
huge interest in designing scalable, elastic and efficient distributed large-scale process-
ing platforms. Issues such as the right trade-off between consistency and availability,
efficient processing with quick recovery, and extensibility remain to be solved.

8. CONCLUSION
As a massively parallel processing framework, MapReduce is well-recognized for its
scalability, flexibility, fault tolerance and a number of other attractive features. In par-
ticular, it facilitates parallelization of a class of applications, commonly referred as
embarrassingly parallelizable. However, as has been commonly acknowledged, Map-
Reduce has not been designed for large scale complex data management tasks. For
example, the original framework does not provide high-level language support that is
familiar to and expected by database users; consequently, users have to individually
develop various processing logics and programs. It also does not have built-in indexing
and query optimization support required for database queries. This has naturally led
to a long stream of research that attempt to address the lack of database functionality.

In this survey, our focus is on the enhancement and extension of MapReduce frame-
work for database applications. We reviewed the basic MapReduce framework, and its
various implementations. Since MapReduce is a framework with no concrete specifi-
cation of how each component should be implemented, there have been different ap-
proaches to the implementation. We compared the design and feature set of the various
well known implementations.

There have also been a number of proposals for extending the basic framework with
new functionality (e.g., languages) and mechanisms of optimizing its performance for
this class of jobs. Many state-of-the-art database techniques have been adapted to en-
hance MapReduce systems to improve their performance and usability. We reviewed
the relevant work on these topics, focusing on the implementation alternatives for
basic database operators in MapReduce, and efforts in extending MapReduce as the
database engine in a distributed environment.

In this survey we also discussed systems that extend MapReduce for more data in-
tensive applications, and that go beyond MapReduce while retaining its flavor and
design principles. Most of this research is ongoing, and there will likely be signifi-
cant improvements to the MapReduce framework as well as extensions to MapReduce
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paradigm for distributed and parallel computing. Distributed data management pro-
posals over MapReduce are typically based on the more mature technology of dis-
tributed and parallel database systems. It has been widely acknowledged that tra-
ditional parallel DBMSs have been designed with a full set of functionality but with
limited scalability, while the MapReduce systems have been designed for massive scal-
ability, but trade off considerable amount of functionality. Both systems have their own
strengths and weaknesses, and cater to somewhat different users and applications.
Notwithstanding these differences, parallel database systems and MapReduce-based
systems do share a very important common ground of exploiting data partitioning and
partitioned execution for achieving parallelism, and surely, we will see more fusion
of technologies where applicable. This survey provides a comprehensive analysis of
the technology and the work to date, and as a basis for further experimentation and
research.
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